4 resultados para DNA mutational analysis

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic diversity can be used to describe patterns of gene flow within and between local and regional populations. The Florida Everglades experiences seasonal fluctuations in water level that can influence local population extinction and recolonization dynamics. In addition, this expansive wetland has been divided into water management regions by canals and levees. These combined factors can affect genetic diversity and population structure of aquatic organisms in the Everglades. We analyzed allelic variation at six DNA microsatellite loci to examine the population structure of spotted sunfish (Lepomis punctatus) from the Everglades. We tested the hypothesis that recurrent local extinction and recent regional divisions have had an effect on patterns of genetic diversity. No marked differences were observed in comparisons of the heterozygosity values of sites within and among water management units. No evidence of isolation by distance was detected in a gene flow and distance correlation between subpopulations. Confidence intervals for the estimated F-statistic values crossed zero, indicating that there was no significant genetic difference between subpopulations within a region or between regions. Notably, the genetic variation among subpopulations in a water conservation area was greater than variation among regions (Fsp>FPT). These data indicate that the spatial scale of recolonization following local extinction appears to be most important within water management units.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rare plant conservation efforts must utilize current genetic methods to ensure the evolutionary potential of populations is preserved. One such effort involves the Key Tree Cactus, Pilosocereus robinii, which is an endangered columnar cactus native to the Florida Keys. The populations have precipitously declined over the past decade because of habitat loss and increasing soil salinity from rising sea levels and storm surge. Next-generation DNA sequencing was used to assess the genetic structure of the populations. Twenty individuals representative of both wild and extirpated cacti were chosen for Restriction Site Associated DNA (RAD) analysis. Samples processed using the HindIII and NotIII restriction enzymes produced 82,382,440 high quality reads used for genetic mapping, from which 5,265 Single Nucleotide Polymorphisms (SNPs) were discovered. The analysis revealed that the Keys’ populations are closely related with little population differentiation. In addition, the populations display evidence of inbreeding and low genetic diversity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Preimplantation genetic diagnosis (PGD) following in vitro fertilization (IVF) offers couples at risk for transmitting genetic disorders the opportunity to identify affected embryos prior to replacement. In particular, embryo gender determination permits screening for X-linked diseases of unknown etiology. Analysis of embryos can be performed by polymerase chain reaction (PCR) amplification of material obtained by micromanipulation. This approach provides an alternative to the termination of an established pregnancy following chorionic villi sampling or amniocentesis. ^ Lately, the focus of preimplantation diagnosis and intervention has been shifting toward an attempt to correct cytoplasmic deficiencies. Accordingly, it is the aim of this investigation to develop methods to permit the examination of single cells or components thereof for clinical evaluation. In an attempt to lay the groundwork for precise therapeutic intervention for age related aneuploidy, transcripts encoding proteins believed to be involved in the proper segregation of chromosomes during human oocyte maturation were examined and quantified. Following fluorescent rapid cycle RT-PCR analysis it was determined that the concentration of cell cycle checkpoint gene transcripts decreases significantly as maternal age increases. Given the well established link between increasing maternal age and the incidence of aneuploidy, these results suggest that the degradation of these messages in aging oocytes may be involved with inappropriate chromosome separation during meiosis. ^ In order to investigate the cause of embryonic rescue observed following clinical cytoplasmic transfer procedures and with the objective of developing a diagnostic tool, mtDNA concentrations in polar bodies and subcellular components were evaluated. First, the typical concentration of mtDNA in human and mouse oocytes was determined by fluorescent rapid cycle PCR. Some disparity was noted between the copy numbers of individual cytoplasmic samples which may limit the use of the current methodology for the clinical assessment of the corresponding oocyte. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this research was to demonstrate the applicability of reduced-size STR (Miniplex) primer sets to challenging samples and to provide the forensic community with new information regarding the analysis of degraded and inhibited DNA. The Miniplex primer sets were validated in accordance with guidelines set forth by the Scientific Working Group on DNA Analysis Methods (SWGDAM) in order to demonstrate the scientific validity of the kits. The Miniplex sets were also used in the analysis of DNA extracted from human skeletal remains and telogen hair. In addition, a method for evaluating the mechanism of PCR inhibition was developed using qPCR. The Miniplexes were demonstrated to be a robust and sensitive tool for the analysis of DNA with as low as 100 pg of template DNA. They also proved to be better than commercial kits in the analysis of DNA from human skeletal remains, with 64% of samples tested producing full profiles, compared to 16% for a commercial kit. The Miniplexes also produced amplification of nuclear DNA from human telogen hairs, with partial profiles obtained from as low as 60 pg of template DNA. These data suggest smaller PCR amplicons may provide a useful alternative to mitochondrial DNA for forensic analysis of degraded DNA from human skeletal remains, telogen hairs, and other challenging samples. In the evaluation of inhibition by qPCR, the effect of amplicon length and primer melting temperature was evaluated in order to determine the binding mechanisms of different PCR inhibitors. Several mechanisms were indicated by the inhibitors tested, including binding of the polymerase, binding to the DNA, and effects on the processivity of the polymerase during primer extension. The data obtained from qPCR illustrated a method by which the type of inhibitor could be inferred in forensic samples, and some methods of reducing inhibition for specific inhibitors were demonstrated. An understanding of the mechanism of the inhibitors found in forensic samples will allow analysts to select the proper methods for inhibition removal or the type of analysis that can be performed, and will increase the information that can be obtained from inhibited samples.